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LETTER TO THE EDITOR
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Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18040 Praha 8, Czech
Republic

Received 11 December 1995

Abstract. We investigate quantitatively the effects of strong electron–electron coupling on the
dynamics of lattice electrons. For this purpose the self-consistent version of the bubble-chain
approximation at zero temperature and half filling of the Anderson (Hubbard) model is used.
Special attention is paid to a critical region of an electron–hole correlation function shaping
the transition from weak to strong interaction. We find an analytic solution with Fermi-liquid
properties on the weak-coupling side of the critical region around the two-particle pole. It is
shown that Fermi-liquid theory does not lead to a consistent behaviour of the self-consistent
solution on the strong-coupling side of the critical region.

The Anderson and Hubbard models provide a microscopic description of the effects of
electron–electron correlations on the dynamics of a lattice electron gas. Especially recently
the single-impurity Anderson model (SIAM) has newly attracted the attention of theorists
because of its role in the exact description of the Hubbard model ind = ∞ [1, 2]. However,
the two models behave at strong coupling in qualitatively different manners. At half filling
and zero temperature, we expect a Kondo-like behaviour, i.e. a narrow resonance at the
Fermi level, in the SIAM, while the Hubbard model ind = ∞, when the antiferromagnetic
LRO is suppressed, turns insulating. To understand the differences in behaviour of these
two related models, it is necessary to have an approximation reliable at intermediate and
strong coupling for both the Anderson as well as for the Hubbard model.

Although we know much about the SIAM from the Betheansatzsolution [3] this
method has yet proved inefficient in the Hubbard model ind = ∞ in spite of an exact
transformation of thed = ∞ Hubbard model onto a SIAM with a self-consistent condition.
The only technique equally well applicable to the SIAM and to the lattice models is many-
body perturbation theory summed via Feynman diagrams.

We know from earlier studies on the SIAM [4, 5] that only self-consistent (renormalized)
sums of diagrams can provide reliable approximations at intermediate and strong coupling.
Otherwise we cannot evade an unphysical RPA pole in a two-particle Green function [6].

Renormalized sums of Feynman diagrams for the Hubbard model ind = ∞ at weak
coupling were studied recently [7, 8]. It was shown [8] that self-consistent, renormalized
sums of the RPA type can be used at any temperature and in principle at weak as well as at
strong coupling. However, it is not straightforward to extrapolate such theories consistently
to the strong-coupling regime. There is no analytic solution to these advanced renormalized
sums and numerical solutions break down before the strong-coupling limit is reached. The
numerical troubles arise when we are approaching the RPA pole (singularity) in an electron–
hole correlation function. There is then no effective way to make the iterations converge in
the strong-coupling regime. It is then crucial to decide from analytic estimates how the pole
in the two-particle function is approached by the full, numerically unreachable solution.
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The transition from the weak- to the strong-coupling regime can hence be investigated
only analytically using some assumptions. The first such analytic study in the SIAM was
done in [9], where a low-frequency approximation was used to estimate the behaviour of
Suhl’s renormalized RPA in the critical region of the two-particle pole. The aim of this
letter is to reinvestigate the transition region between weak- and strong-coupling regimes
in the SIAM and the Hubbard model ind = ∞. We extend Hamann’s approach from [9]
based on a Fermi-liquid, low-frequency expansion for electron–hole bubbles and show how
dominant contributions to the self-consistent solution can analytically be estimated when
the two-particle pole is being approached. As an example we use the self-consistent version
of the bubble-chain (shielded interaction) approximation [7, 8] applied to the SIAM at half
filling and zero temperature. This approximation, in contrast to earlier theories [4, 5, 9],
represents a thermodynamically consistent and conserving theory [8] applicable to the SIAM
as well as to the Hubbard model. As a result we obtain a set of algebraic equations the
solution of which forms a Fermi liquid at weak coupling, but leads to inconsistent results
at intermediate and strong couplings. This inconsistency is explained by the failure of the
Fermi-liquid, low-frequencyansatzto capture all the relevant features of the full solution at
intermediate and strong coupling. It is necessary to take into account also incoherent, non-
Fermi-liquid contributions to the two-particle Green function to reach a consistent behaviour
of diagrammatic approximations at intermediate and strong coupling.

The bubble-chain approximation for the self-energy can generally be written in the
spin-polarized version as [7, 8]

6σ(iωn) = −U2

2β

∞∑
m=−∞

Gσ(iωn + iνm)
X−σ (iνm)

1 − U2X↑(iνm)X↓(iνm)
(1)

whereXσ (iνm) is a contribution due to the electron–hole bubble,

Xσ (iνm) = 1

β

∞∑
n=−∞

Gσ(iνm + iωn)Gσ (iωn). (2)

The electron propagatorGσ(z) is defined for the SIAM as

G(z) = [z + µσ − V 20σ (z) − 6σ(z)]−1

whereµσ = µ + σh − εf is the effective chemical potential and0σ (z) is the local element
of the Green function of the conduction electrons. For the Hubbard model ind = ∞ we
have

Gσ(z) =
∫

dε ρ(ε)[z + µ − 6σ(z) − ε]−1

whereρ(ε) is the density of states (DOS).
We can analytically continue the sums over the Matsubara frequencies (ωn = (2n +

1)πβ−1, νm = 2mπβ−1) to the real frequencies and after some manipulations we obtain the
following representations atβ = ∞, n = 1 andh = 0

ReX(ω+) =
0∫

−∞
dx ρ(x)Re[G(x + ω+) + G(x − ω+)] (3a)

Im X(ω+) = −π sgnω

|ω|∫
0

dx ρ(x)ρ(x − |ω|) (3b)
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whereρ(ω) = − 1
π

Im G(ω+), ω+ = ω + i0+. The self-energy can then be represented as

Re6(ω+) = −U2

2

0∫
−∞

dx

{
ρ(x) Re

[
C(x − ω+) − C(x + ω+)

]
+ 1

π
Im C(x+) Re

[
G(x − ω+) − G(x + ω+)

]}
(4a)

Im 6(ω+) = U2

|ω|∫
0

dx ρ(x − |ω|) Im C(x+). (4b)

The two-particle correlation functionC(z) := X(z)/(1−U2X(z)2). Equations (3a) and (4a)
represent a set of nonlinear integral equations for Re6(ω+) and Im6(ω+). These equations
can be solved numerically by iterations at weak coupling [5, 7, 8], but the iteration procedure
breaks down asC(0) → ∞ with increasingU . SinceX(0) < 0 the quantity 1+ UX(0)

approaches zero at intermediate coupling. The dominant contributions to6(ω) then come
from a vicinity of the Fermi energy (ω ∼ 0) where the two-particle correlation functionC(ω)

is sharply peaked. We now use the Fermi-liquid assumption that only the low-frequency
behaviour around the Fermi energy is decisive for the physics of interacting electrons around
the two-particle pole and replace the denominator ofC(ω) with a quadratic polynomial

1 + UX(ω) ≈ UX′′(0)[12 + ω2 − iπaω] (5)

where

X(0)′′ :=
∫ 0

−∞
dx ρ(x) ReG′′(x)

a := ν2/X′′(0)

12 := (1 + UX(0))/UX′′(0).

Hereν is the DOS of the unpertubed Green function at the Fermi energy. The parameter1

is an energy scale measuring dominant fluctuations in the critical region of the two-particle
pole. Note that Hamann used in [9] the same idea of a low-frequency expansion at the
denominator of a two-particle function, but expandedX(ω) only to linear power inω.
This difference leads to drastic changes in the critical behaviour of the solution. It is also
necessary to realize that (5) is valid only if Fermi-liquid theory holds without restrictions,
i.e. there are no other relevant energies except for the Fermi one.

Inserting (5) in (4a) we obtain in leading order of the limit1 → 0

Re6(ω+) = ReG(ω)J (∞) − ρ(ω) sgnωK(ω)

= a ReG(ω)

2X′′(0)

∞∫
0

dx
x

(12 + x2)2 + π2a2x2

−ρ(ω) sgnω

2X′′(0)

|ω|∫
0

dx
12 + x2

(12 + x2)2 + π2a2x2
(6a)

Im 6(ω+) = −ρ(ω)J (ω) = −πaρ(ω)

2X′′(0)

|ω|∫
0

dx
x

(12 + x2)2 + π2a2x2
. (6b)



L176 Letter to the Editor

We see that integral equations (4a) turned algebraic, where only two positive parameters1

andX′′(0) are expressed as integrals over the products of the full Green functionG(ω). The
parameterX′′(0) is proportional to the effective mass (−6′(0)) of quasiparticles from Fermi-
liquid theory and can be assumed as an effective mass of electron–hole pairs. The energy
1 is a new relevant scale for the two-particle scattering. Although (6a) is strictly valid only
in the limit 1 → 0, we can extrapolate it also to weak coupling,U → 0, 1 → ∞. Such
a theory then fulfills Fermi-liquid assumtions, i.e. Im6(ω) ∼ −ω2 and Re6(ω) ∼ −ω

as ω → 0, and Im6(ω) ∼ −1/ω2 and Re6(ω) ∼ 1/ω as ω → ∞. Approximation (6a)
represents the simplest Fermi-liquid theory with frequency dependent self-energy determined
essentially from algebraic equations. It may serve as an alternative to the recently proposed
approximations trying to clarify the way the Fermi liquid breaks down at strong coupling
of the Hubbard model [1, 10, 11, 12, 13].

The integrals in (6a) can be performed explicitly. To simplify the studied equations we
confine our analysis only to the SIAM. If we use the standard approximation0(ω+) = −i0
we can resolve (6a) analytically in the limit1 → 0. We find an explicit solution

Im 6(ω) = −
√√√√√V 402

4
+ J (ω)

1 +
(

J (ω)ω − sgnωK(ω)Im6(ω+)

J (ω)V 20 − [J (ω) + J (∞)] Im 6(ω+)

)2 + V 20

2
(7a)

Re6(ω) = −Im 6(ω+)
J (∞)ω − sgnωK(ω)[V 20 − Im 6(ω+)]

J (ω)V 20 − [J (ω) + J (∞)] Im 6(ω+)
. (7b)

To close the approximation we complete these equations with definitions of the parameters

X′′(0) =
0∫

−∞
dx ρ(x) ReG′′(x) ≈ ν ReG′(0) (8a)

12 = 1

UX′′(0)

1 + 2U

0∫
−∞

dx ρ(x) ReG(x)

 . (8b)

The set of equations (7a) and (8a) can be solved numerically. Contrary to Hamann’s result
we reach a critical interactionUc ≈ 3.7/ν at which1 = 0 and a pole in the electron–hole
Green function appears at the Fermi energy. The pole leads, however, to a quite different
behaviour of the self-consistent solution than in the non-self-consistent RPA. The reason
for this behaviour deviating qualitatively from that found in RPA on the one hand and by
Hamann on the other hand lies in a breakdown of Fermi-liquid theory aroundUc. The
expansion coefficientX′′(0), neglected by Hamann, diverges at the critical point. Namely
1X′′(0) → αc > 0 and the effective mass of quasiparticles becomes infinite. Hence the
low-frequency approximation (5) indicates a sharp transition between weak- and strong-
coupling regimes. The existence of a sharp transition is, however, incompatible with a
strong-coupling solution, unless the critical point represents a metal–insulator transition, i.e.
the DOS at the Fermi energy vanishes with1 → 0. Namely, it is easy to show that the
solution at and aboveUc does not possess Fermi-liquid properties and

Re6(0−) = −Re6(0+) > 0 (9a)

and when|Re6(0)| < w, wherew is a half bandwidth, then

Im 6(i0+) < 0. (9b)

The analyticity assumption for the expansion (5) hence does not hold any longer.
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Analysing the equations atU > Uc we find that (5) must be replaced by

1 + UX(ω) ≈ UX′(0) [1 + |ω| − iπaω] (10)

reflecting a nonanalyticity of the particle–hole bubble at low frequencies at strong coupling.
The weak-coupling and strong-couplingansatze(5) and (10), respectively, are evidently
incompatible and do not allow a continuous matching. There is no critical point from
the strong-coupling side as in Hamann’s analysis. We must hence conclude that the
above analysis based on (5) is incomplete and does not lead to the actual strong-coupling
asymptotics of self-consistent diagrammatic approximations.

Since the real part of the self-energy experiences a jump and the imaginary part acquires
a nonzero value at the critical point, expansion (5) aroundω = 0 in this form becomes
meaningless. The frequency interval within which Fermi-liquid theory holds has shrunk
to zero atUc. To assess the solution in the critical region,U ↗ Uc, more precisely we
have to take into account two contributions to the functionX(ω+). The first one is that
from (5) and holds now only for|ω| < 2. Energy2 determines the interval within which
Fermi-liquid theory holds. It can be defined as a frequency where the real (imaginary)
part of the self-energy reaches its (first) extremum. It is essential that2 → 0 as1 → 0.
FunctionX(ω+) outside the interval [−2, 2] must be newly approximated and one has to
expand around the points±2. Such an expansion has its leading terms of type (10). In
the limit 1 → 0 the non-Fermi-liquid contributions from the additive expansion around
2 → 0 more and more take over the control of the critical behaviour and preclude the
critical point from being reached. This means that the mechanism by which the RPA pole
is circumvented in self-consistent approximations with two-particle bubbles is much more
complicated than anticipated in Hamann’s low-energy analysis within Fermi-liquid theory.
Only the full treatment of self-consistent diagrammatic approximations with the non-Fermi-
liquid contributions (10) can produce the genuine strong-coupling asymptotics. It is not
yet clear whether the expected strong-coupling Kondo asymptotics in the SIAM will be
reproduced correctly in this way. The result depends on a detailed balance of the Fermi-
and non-Fermi-liquid contributions in the critical region and on the dispersion relation of the
underlying lattice. The complete analysis of the bubble-chain approximation in the critical
region1 → 0 will be presented elsewhere.

To conclude, we have demonstrated that self-consistent diagrammatic approximations
at intermediate and strong coupling, where a pole in a particle-hole correlation function
is approached, show interesting behaviour going beyond Fermi-liquid theory. We have
analysed the self-consistent version of the bubble-chain approximation for the Anderson
and Hubbard models and proposed a simple analytic solution with Fermi-liquid properties
at weak coupling. However, to obtain the asymptotics at strong coupling, it is necessary
to restrict the validity of Fermi liquid theory to an interval around the Fermi energy,
ω ∈ [−2, 2], vanishing when the critical point is reached. The contributions obtained
from Fermi liquid theory alone are insufficient to suppress the two-particle singularity and
to reflect the strong-coupling behaviour. Differences in solutions of (6a) and that of Hamann
from [9] show what a delicate problem it is to find the pertinent asymptotics of the Anderson
and Hubbard models in the critical region of a two-particle pole crucial for the transition
from weak to strong coupling. Neither of the above analytic solutions can yet be seen as
exact at strong coupling within the chosen self-consistent approximations.

This work was supported in part by grant No 202/95/0008 of the Grant Agency of the Czech
Republic.
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